IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, APRIL 2007 1

Supplementary Material to TCBB Manuscript:
Identification of Regulatory Modules in
Time-Series Gene Expression Data using a

Linear Time Biclustering Algorithm

Sara C. Madeira, Miguel C. Teixeira,
Isabel $-Correia and Arlindo L. OliveiraMember, IEEE

I. COMPLEXITY AND IMPLEMENTATION |ISSUES

Since the complexity of the algorithm CCC-Biclustering depends strongly on the suffix tree
construction and on the data structures used, we will revise here the Ukkonen’s algorithm for
suffix tree construction at a higher level and give the intuition behind its linear time construction.
We will also described the data structures used to achieve the lioid| C|) in the construction
of the generalized suffix tre€ used in the CCC-Biclustering algorithm. However, the reader is
pointed to Gusfield [1] for a very good explanation about the linear time construction of suffix

trees. The short explanation provided here is based on that.

Sara C. Madeira is with the Knowledge Discovery and BlOinformatic (KDBIO) team of INESC-ID, Lisbon, Portugal. She
is also with University of Beira Interior, Covily Portugal, and Instituto Superioed@nico, Technical University of Lisbon,
Portugal. E-mail: smadeira@di.ubi.pt.

Miguel C. Teixeira is with the Biological Sciences Research Group, Centre for Biological and Chemical Engineering/IBB-
Institute for Biotechnology and Bioengineering, Instituto Superiécrico, Technical University of Lisbon, Portugal. E-mail:
mnpct@ist.utl.pt.

Isabel %-Correia is with the Biological Sciences Research Group, Centre for Biological and Chemical Engineering/IBB-
Institute for Biotechnology and Bioengineering, Instituto Superiecriico, Technical University of Lisbon, Portugal. She is also
with Instituto Superior €cnico, Technical University of Lisbon, Portugal. E-mail: isacorreia@ist.utl.pt.

Arlindo L. Oliveira is with the Knowledge Discovery and BlOinformatic (KDBIO) team of INESC-ID, Lisbon, Portugal. He
is also with Instituto Superior dcnico, Technical University of Lisbon, Portugal. E-mail: aml@inesc-id.pt.

April 10, 2007 DRAFT

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, APRIL 2007 2

A. Ukkonen’s Algorithm

Ukkonen’s algorithm to construct suffix trees uses the conceptsphicit suffix treeand
suffix linkto achieve a linear time construction. We will first introduce these concepts and then
describe the algorithm.

An implicit suffix treefor a string.S is a tree obtained from the suffix trdé constructed for
the stringS$ by removing every copy of the symbél from de edge labels of the tree, then
removing any nodev that does not have at least two children. In particular, an implicit suffix
tree for a prefixS[1..] of string S is similarly defined by taking the suffix tree fét{1..i]$ and
deleting$ symbols, edges and nodes as above. The implicit suffix tree of the $tfing| is
denoted by7;, 1 > ¢ > |S|. Let xa denote an arbitrary string, wheredenotes a single character
anda denotes a (possibly empty) substring. For any internal nodéh string-labelzq, if there
is another nodes(v) with string-label«, then a pointer fromy to s(v) is called asuffix link
The pair (v, s(v)) will denote the suffix link fromv to s(v). As a special case, i is empty,
za has a suffix link leading to the rooty, root).

Ukkonen’s algorithm starts by constructing an implicit suffix tigdor each prefix ofS[1...:]
of a string S, starting from7} and incrementing by one until7jg is built, where|S| is the
number of characters if. The true suffix tree front' is then constructed frorij,.

The algorithm is divided intdS| phases (see Algorithm 1). In phase 1, the implicit suffix
tree T;,, is constructed fron¥;. Each phaseé + 1 is further divided intoi + 1 extensionsone
for each of thei + 1 suffixes of S[1...i 4+ 1]. In extension; of phasei + 1, the algorithm first
finds the end of the path from the root that is labeled with the subsfting:|. It then extends
this substring by adding the characte]i + 1] to its end (unlessS[i + 1] is already there). As
such, in phase + 1, the stringS|1...i + 1] is first inserted in the tree, followed by its suffixes
S[2...i+1],...,8[S]...i+1] (in extensiond, ..., |S

, respectively). The extensian-1 of phase
i+ 1 extends theemptysuffix of S[1...i], that is, inserts the single character striig + 1] into
the tree (unless it is already there).

The algorithm followshree suffix extension rulés order to make sure that the sufft;...i+
1] is in the tree after the extension 68f;...i] with characterS[i + 1]:

(Rule 1)If path S[j..i] ends at a leaf, concatena$é + 1] to the end of its edge label;

(Rule 2)If path S[j...i] ends before a leaf, and doesn’t continuedjy+ 1], connect the end

of the path to a new leaf by an edge labeled by charactg}i + 1]. If the path ended at the

April 10, 2007 DRAFT

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, APRIL 2007 3

Algorithm 1: High-Level Ukkonen’s Algorithm [1]

input: Discretized gene expression matrix
1 Construct the implicit suffix tredy. // T is the single edge labeled by the characiét].
2 for i from1to |S| —1 do
IIPHASE + 1: constructsT; ;.
//UpdatesT; (with all suffixes ofS[1...7]) to T}, (with all suffixes of S[1...i + 1]).
3 for jfrom1to|i+1do
[[EXTENSION j: ensures that suffi$[j...i + 1] is in T}4;.
4 Find the end of the path from the root that is labeld...i| in the current implicit
suffix tree. If needed, extend that path by adding the char>er 1] to its end.

middle of an edge, split the edge and insert a new internal node as a parent fif leaf

(Rule 3)If the path can be continued ki + 1] do nothing (the suffixS|j...i + 1] is already
in the tree).

Given these suffix extension rules, once the end of a sffjx.i] of S[1..i] is in the current
tree, the execution of the extension rules in order to ensure that slffixi + 1] is in the tree
can be performed in constant time. The key issue in implementing Ukkonen'’s algorithm is then
how to locate the end of all the+ 1 suffixes of S[1...i]. This is achieved by usinguffix links
andthree implementation tricks

Lets start by an intuitive motivation about how suffix links can be used to speed up path
traversals. Extension (of phase: + 1) finds the end of the path[;...i] in the tree (and extends
it with characterS[i + 1]. Similarly, extension; + 1 finds the end of the patly[j + 1...7].
Assuming thatv is an internal node with string-labél[j]a on the pathS];...i], then we can
avoid traversing the path when locating the end of path[j + 1...i], by starting the traverse
from the suffix link of v, s(v). This can be done because these suffix links always exist and
are in fact easy to set. The certainty about the existence of the suffixdiskv)) comes from
the observation that if an internal nodeis created during extension (of phasei + 1), then
extension;j + 1 will find out the nodes(v). Why is this true? Let be a node with string-label
xa. This node can only be created by extendiarie 2 that is,v can only be inserted at the end
of path S[j...7], which continued by some charactet S[i + 1]. In this context, the pathsac
andac have been inserted in the tree before phasé. This means that in extensign- 1, node
s(v) is either found since it is already in the tree or created at the end ofcpatly|j + 1...7].

Consider now the extensions of phase 1. Extensionl extends patlt[1...i] with character

April 10, 2007 DRAFT

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, APRIL 2007 4

S[i+1]. This can be done easily since the pafh...;] always ends at ledf, and is thus extended
by Rule 1 As such, extensiom can be performed in constant time, if we maintain a pointer to
the edge at the end ¢f[1...:]. What about the subsequent extensigrsl, j = 1,...,i? Since
extensionj has located the end of the patly...i] we can start from there, and walk up at most
one node either to the root, or to a nodé¢hat has a suffix links(v) from it.

In case we have walked up to the root, we just have to traverse theSpathl...i] explicitly
downwards starting from the root.

In case we have followed the suffix link to nodév) let za be the edge-label of. This
meansS|j...i] = xaf for someg € 3. In this scenario, we just have to follow the suffix link
of v, and continue by matching downwards from node(v) (which is now labeled byy).
Having found the end of paths = S[j + 1...i], we apply the extension rules to ensure that it is
extended with the charactéf; + 1]. Finally, if a new internal node was created in extension
J, we set its suffix link to point to the end node of pathy + 1..i].

However, we can speed up these explicit traversals by usingntpéementation trick 1
(skip/count in Gusfield [1}) each pathS[j...:], which is followed in extensiory, is known
to exist in the tree, as such, the path can be followed by choosing the correct edges, instead of
examining each character. L&{k] be the next character to be matched on g#th..i]. Now an
edge labeled by [p...q] can be traversed simply by checking ti#8p| = S[k|, and skipping the
nextq — p character of SJj...i]. This improves the time to traverse a path from time proportional
to its string-depth to time proportional to its node-depth.

With the suffix links and the first trick the total time of a phase is @WsS|). However, there
are |S| phases and the total time bound is sfil{|S|?). In order to achieve the desired linear
time bound we just need a simple implementation detail and two more implementation tricks.

The implementation detail concereslge-label compressioftn fact, with the current imple-
mentation, the edge-labels in the suffix tree might con@ipS|) characters which makes the
space required for the suffix tree to 0¥|S|?). As the time of the algorithm is at least as large as
the size of its input, that many characters make®@$|) time bound impossible [1]. However
there is a simple alternative scheme for edge-labeling: instead of explicitly write a substring
Slp...q] as edge-label, we can write onlypair of indiceson the edge(p, ¢), specifying the
start and end positions of that substringdnSince the algorithm has a copy 6f it can locate

any particular character if in constant time given its position in the string.

April 10, 2007 DRAFT

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, APRIL 2007 5

For example, when matching along an edge, the algorithm uses the index pair written on
the edge to retrieve the needed characters ffoand then performs the comparisons on those
characters. The extension rules are also easily implemented in this labeling scheme: when the
extension rule 2 applies in a phase- 1, we just have to label the newly created edge with
the index pair(: + 1,7 + 1), and when rule 1 applies (on a leaf edge), we only need to change
the index pair on that leaf edge frofp, ¢) to (p,q + 1). Since the number of edges is at most
2|S| — 1, the suffix tree uses onl®(|.S|) symbols and)(|S|) space.

The implementation trick 2 (“show stopper” in Gusfield [1i$ based on the observation that
some extensions can be found unnecessary to compute explicitly. In fact, Rule 3 is a “show
stopper” since if the pattb[j.... + 1] is already in the tree, so are the pathg + 1...i +
1],...,S[i+1]. As such, phasé+ 1 can be finished at the first extensignhat applies Rule 3.

The implementation trick 3 (“once a leaf, always a leaf” in Gusfield [1} based on the
observation that a node created as a leaf remains a leaf thereafter because no extension rule
adds children to a leaf. In fact, if extensigncreated a leaf (humbereg, the extensiory of
any later phase + 1 applies Rule 1 (concatenating the next charaétgr+ 1] to end of the
edge-label ofj). As such, explicit applications of Rule 1 can be eliminated as follows: using
edge-label compression described above and representing the end position of each terminal edge
by a global value: standing for “the current end position”. This means that in pliasg, when
a leaf edge is first created ad would normally be labeled Wih..i + 1] instead of writing the
pair of indexes(p,i + 1), as explained above, we writg, ¢). The symbole is a global index
and is set ta + 1 once in each phase. In phase 1, since we know that rule 1 will apply in
extensions 1 through at least, we do not need explicit work to implement thgsextensions.
Instead, we only need constant time to increment the valueasfd then do explicit work for
(some) extensions starting with+ 1.

The Single Phase Algorithm (SPA)] summarizes the implementation of phase 1:

Algorithm 2: Single Phase Algorithm (SPA) [1]
input: S andT;
1 e =1+ 1 (implements extensionk..;j implicitly).
2 Compute extensiong, ... until j > i+ 1 or Rule 3 is applied in extension
3 Jir1 = j — 1 (for the next phase).

April 10, 2007 DRAFT

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, APRIL 2007 6

Using suffix links, edge-compression and tricks 1, 2 and 3, Ukkonen’a algorithm builds the
implicit suffix trees7; throughTis in O(|S|) total time. Moreover, in order to create the true
suffix tree’T" we just have to use the final implicit suffix trégs. We first add a string terminal
symbol$ to the end ofS and let Ukkonen’s algorithm continue with this symbol. Next, we just
have to replace every indexon every leaf node with the valyé&|. This is achieved by a simple
traversal of the tree, visiting each leaf each, which takesS|) [1].

In order to construct the generalized suffix tree for a set of stfifig..., S| } all with the
same lengtiC| and sharing the same alphali&t we first build the implicit suffix trees from
Ts throughSlTS|10| using Ukkonen'’s algorithm. We then insert the strisg®on the tree starting
with the last implicit suffix tree of;_;: Ts‘.C‘l’ 2 < i < |R|. Finally we transform the last implicit
suffix treeTS“gl‘ in a true suffix tree by aiélding a string terminal symBpto the end ofS; and
let Ukkonen’s algorithm continue with these symbols one at the time. Assuming that the nodes
in the implicit suffix tree organize their children by lexicographic order of the first character of
their edge-labels, this is done in a way such that> ... > $;z and every string terminator
$; is lexicographically smaller then any characterdih This enables the insertion of leaves
corresponding to terminators in the root node (and other nodes) always in the first position of
the data structures storing the children of each node. This is do@¢|R||C|), since there are
|R| strings of length/C'| and inserting each string in the suffix tree using Ukkonen’s algorithm

takesO(|R||C|) as we have seen above.

B. Data Structures used in the Generalized Suffix Tree Construction

We use three types of nodes in the construction of the generalized suffi{ tréee root,
internal nodes and leaf nodes. The root stores an array calliddren with |C||X| + |R|
positions where each position is a pointer to the first of its “potential” children, which can
either be internal nodes, leaf nodes or a null pointer. The array is sorted in lexicographic order
of the first character of the edge-label in the nodes. The frgtositions store theR| string
terminators, the next positions store the nodes whose first character in the edge-label starts with
Y[1]...2|C...2[|C|%]]. In this setting,children]j + |R|] is null if there is not a suffix of
any of the stringsS; starting with the character ix'[j], that is, if the potential node whose
edge-label starts with the charactelj] does not exists.

Each internal node stores a pointer to its first child, a pointer to its right sibling, a pointer

April 10, 2007 DRAFT

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, APRIL 2007 7

to the node we get by following its suffix link (if it exists), the index pair representing its edge-
label (start and end position os the substring), its string-length), the number of leafs in its
subtree,L(v) and a flag indicating if it corresponds to a maximal CCC-Bicluster or not. The
first child of the node is the first element of a linked-list of nodes (either internal nodes or leaves
nodes) corresponding to its children sorted in lexicographic order of the first character of their
edge-labels. The right sibling of each internal nades also the first element of a linked-list
storing all its siblings (nodes whose parent is the parent)of

Leaf nodes store the same information as internal nodes except the pointer to the first child.

Il. EXPERIMENTAL RESULTS WITHSYNTHETIC DATA

Table | shows the top CCC-Biclusters discovered sorted in ascending orgevabdie. It is
clear from the presented results that the CCC-algorithm coupled with the statistical significance
test described in the paper is able to identify the CCC-Biclusters planted together with a number

of highly overlapping CCC-Biclustets

REFERENCES

[1] D. Gusfield.Algorithms on strings, trees, and sequend&emputer Science and Computational Biology Series. Cambridge
University Press, 1997.

ILost genes are caused by the (artificial) way in which CCC-Biclusters were planted. When two or more CCC-Biclusters are
overlapping, the expression patterns in the overlapping submatrices are those of the last planted CCC-Bicluster. For this reason,
the genes in overlapping zones are lost for the previously planted CCC-Biclusters.

April 10, 2007 DRAFT

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, APRIL 2007

TABLE |

Top CCC-BICLUSTERS RECOVERED WITHOUT FILTERING HIGHLY OVERLAPPING EXPRESSION PATTERNSFTER SORTING
THE DISCOVEREDCCC-BICLUSTERS USING THE STATISTICAL SIGNIFICANCEp-VALUE).

ID | Expression Pattern | #Time-Points| #Genes| p-Value | Closest planted CCC-Bicluster
24475| DDNUDDNDDNDD 12(35-46) 18 4.13E-56 || MATCH 7
5790 | UDNNDUNUDNDD 12(26-37) 19 1.37E-55 || MATCH 8
17868 | NUNUUNDDNDNU 12(21-32) 19 3.72E-55 || MATCH 1
25020 | DNDNDDNNNNDD 12(33-44) 18 6.10E-54 || MATCH 10
2438 | UDDUNUDDU 9(37-45) 23 8.43E-40 || MATCH 6 LOST 1 GENE
5937 | UUDNNDUNUDNDD 13(25-37) 12 2.76E-37 || OVERLAP 8
15158 | NUNDNNDDUNN 11(30-40) 16 4.08E-37 || MATCH 3 LOST 3 GENES
34531 | UNUDUDNDUU 10(2-112) 16 7.17E-34 || MATCH 5
16797 | NDUNDNUUU 9(25-33) 20 8.20E-33 || MATCH 9
23592 | DDUNUDDU 8(28-45) 24 1.38E-31 | OVERLAP 6
15893 | NNDUNUDN 8(28-35) 21 2.04E-27 || OVERLAP 8
18237 | NNUNUUNDDNDNU 13(20-32) 9 1.17E-26 | OVERLAP
15616 | NDUNUDND 8(29-36) 20 9.10E-26 | OVERLAP 8
24476 | DDNUDDNDDNDDU 13(35-47) 8 1.82E-24 | OVERLAP 7
33996 | UDUDNDUU 8(4-11) 18 2.31E-24 || OVERLAP 5
24482 | DDNUDDNDDNDDD 13(35-47) 8 2.781E-24|| OVERLAP 7
5796 | UDNNDUNUDNDDD 13(26-38) 8 4.46E-23 || OVERLAP 8
38344 | NNUDUNNNU 9(1-9) 15 5.29E-23 || MATCH 2
17874 | NUNUUNDDNDNUD 13(21-33) 8 1.00E-22 || OVERLAP
15613 | NDUNUDN 7(29-35) 23 2.12E-21 || OVERLAP 8
24818 | DDDNUDDNDDNDD 13(34-46) 7 6.69E-21 || OVERLAP 7
14213 | NDDNUDDNDDNDD 13(34-46) 7 1.17E-20 || OVERLAP 7
25027 | DNDNDDNNNNDDD 13(33-45) 7 3.12E-20 || OVERLAP 7
17048 | NNDUNDNUUU 10(24-33) 11 2.90E-23 || OVERLAP 9
3997 | UDNDNDDNNNNDD 13(32-44) 7 7.07E-20 || OVERLAP 7
15157 | NUNDNNDD 8(30-37) 17 1.93E-19 | OVERLAP 3
5789 | UDNNDUN 7(26-32) 22 1.67E-18 | OVERLAP 8
5416 | UNDNUUU 7(27-33) 21 1.70E-18 || OVERLAP 9
5942 | UUDNNDUNUDNDDD 13(32-44) 7 1.93E-18 | OVERLAP 7
37706 | NUDUNNNU 8(2-9) 16 2.23E-18 || OVERLAP 2
4182 | UNUDNDD 7(31-37) 20 3.04E-18 || OVERLAP 8
13600 | NDDNNNN 7(36-42) 19 4.07E-18 || OVERLAP 10
23014 | DNDDNDD 7(40-46) 19 7.71E-18 || OVERLAP 7
40141 | DUDNDUU 7(5-11) 19 1.03E-17 | OVERLAP 5
14145 | NDUUDDDD 8(34-41) 14 1.48E-17 || MATCH 4 LOST 1 GENE

April 10, 2007

DRAFT

