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I. COMPLEXITY AND IMPLEMENTATION ISSUES

Since the complexity of the algorithm CCC-Biclustering depends strongly on the suffix tree

construction and on the data structures used, we will revise here the Ukkonen´s algorithm for

suffix tree construction at a higher level and give the intuition behind its linear time construction.

We will also described the data structures used to achieve the boundO(|R||C|) in the construction

of the generalized suffix treeT used in the CCC-Biclustering algorithm. However, the reader is

pointed to Gusfield [1] for a very good explanation about the linear time construction of suffix

trees. The short explanation provided here is based on that.
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A. Ukkonen’s Algorithm

Ukkonen’s algorithm to construct suffix trees uses the concepts ofimplicit suffix treeand

suffix link to achieve a linear time construction. We will first introduce these concepts and then

describe the algorithm.

An implicit suffix treefor a stringS is a tree obtained from the suffix treeT constructed for

the stringS$ by removing every copy of the symbol$ from de edge labels of the tree, then

removing any nodev that does not have at least two children. In particular, an implicit suffix

tree for a prefixS[1..i] of string S is similarly defined by taking the suffix tree forS[1..i]$ and

deleting$ symbols, edges and nodes as above. The implicit suffix tree of the stringS[1..i] is

denoted byTi, 1 ≥ i ≥ |S|. Let xα denote an arbitrary string, wherex denotes a single character

andα denotes a (possibly empty) substring. For any internal nodev with string-labelxα, if there

is another nodes(v) with string-labelα, then a pointer fromv to s(v) is called asuffix link.

The pair(v, s(v)) will denote the suffix link fromv to s(v). As a special case, ifα is empty,

xα has a suffix link leading to the root,(v, root).

Ukkonen’s algorithm starts by constructing an implicit suffix treeTi for each prefix ofS[1...i]

of a stringS, starting fromT1 and incrementingi by one untilT|S| is built, where|S| is the

number of characters inS. The true suffix tree fromS is then constructed fromT|S|.

The algorithm is divided into|S| phases (see Algorithm 1). In phasei + 1, the implicit suffix

treeTi+1 is constructed fromTi. Each phasei + 1 is further divided intoi + 1 extensions, one

for each of thei + 1 suffixes ofS[1...i + 1]. In extensionj of phasei + 1, the algorithm first

finds the end of the path from the root that is labeled with the substringS[j...i]. It then extends

this substring by adding the characterS[i + 1] to its end (unlessS[i + 1] is already there). As

such, in phasei + 1, the stringS[1...i + 1] is first inserted in the tree, followed by its suffixes

S[2...i+1], . . . , S[|S|...i+1] (in extensions1, . . . , |S|, respectively). The extensioni+1 of phase

i + 1 extends theemptysuffix of S[1...i], that is, inserts the single character stringS[i + 1] into

the tree (unless it is already there).

The algorithm followsthree suffix extension rulesin order to make sure that the suffixS[j...i+

1] is in the tree after the extension ofS[j...i] with characterS[i + 1]:

(Rule 1)If path S[j..i] ends at a leaf, concatenateS[i + 1] to the end of its edge label;

(Rule 2)If path S[j...i] ends before a leaf, and doesn’t continue byS[i + 1], connect the end

of the path to a new leafj by an edge labeled by characterS[i + 1]. If the path ended at the
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Algorithm 1 : High-Level Ukkonen’s Algorithm [1]
input : Discretized gene expression matrixA
Construct the implicit suffix treeT1. // T1 is the single edge labeled by the characterS[1].1

for i from 1 to |S| − 1 do2

//PHASEi + 1: constructsTi+1.
//UpdatesTi (with all suffixes ofS[1...i]) to Ti+1 (with all suffixes ofS[1...i + 1]).
for j from 1 to |i + 1 do3

//EXTENSION j: ensures that suffixS[j...i + 1] is in Ti+1.
Find the end of the path from the root that is labeledS[j...i] in the current implicit4

suffix tree. If needed, extend that path by adding the characterS[i + 1] to its end.

middle of an edge, split the edge and insert a new internal node as a parent of leafj;

(Rule 3)If the path can be continued byS[i + 1] do nothing (the suffixS[j...i + 1] is already

in the tree).

Given these suffix extension rules, once the end of a suffixS[j...i] of S[1..i] is in the current

tree, the execution of the extension rules in order to ensure that suffixS[1...i + 1] is in the tree

can be performed in constant time. The key issue in implementing Ukkonen’s algorithm is then

how to locate the end of all thei + 1 suffixes ofS[1...i]. This is achieved by usingsuffix links

and three implementation tricks.

Lets start by an intuitive motivation about how suffix links can be used to speed up path

traversals. Extensionj (of phasei + 1) finds the end of the pathS[j...i] in the tree (and extends

it with characterS[i + 1]. Similarly, extensionj + 1 finds the end of the pathS[j + 1...i].

Assuming thatv is an internal node with string-labelS[j]α on the pathS[j...i], then we can

avoid traversing the pathα when locating the end of pathS[j + 1...i], by starting the traverse

from the suffix link of v, s(v). This can be done because these suffix links always exist and

are in fact easy to set. The certainty about the existence of the suffix link(v, s(v)) comes from

the observation that if an internal nodev is created during extensionj (of phasei + 1), then

extensionj + 1 will find out the nodes(v). Why is this true? Letv be a node with string-label

xα. This node can only be created by extensionRule 2, that is,v can only be inserted at the end

of pathS[j...i], which continued by some characterc 6= S[i + 1]. In this context, the pathsxαc

andαc have been inserted in the tree before phasei+1. This means that in extensionj+1, node

s(v) is either found since it is already in the tree or created at the end of pathα = S[j + 1...i].

Consider now the extensions of phasei + 1. Extension1 extends pathS[1...i] with character
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S[i+1]. This can be done easily since the pathS[1...i] always ends at leaf1, and is thus extended

by Rule 1. As such, extension1 can be performed in constant time, if we maintain a pointer to

the edge at the end ofS[1...i]. What about the subsequent extensionsj + 1, j = 1, . . . , i? Since

extensionj has located the end of the pathS[j...i] we can start from there, and walk up at most

one node either to the root, or to a nodev that has a suffix links(v) from it.

In case we have walked up to the root, we just have to traverse the pathS[j +1...i] explicitly

downwards starting from the root.

In case we have followed the suffix link to nodes(v) let xα be the edge-label ofv. This

meansS[j...i] = xαβ for someβ ∈ Σ. In this scenario, we just have to follow the suffix link

of v, and continue by matchingβ downwards from nodes(v) (which is now labeled byα).

Having found the end of pathαβ = S[j +1...i], we apply the extension rules to ensure that it is

extended with the characterS[i + 1]. Finally, if a new internal nodeu was created in extension

j, we set its suffix link to point to the end node of pathS[j + 1..i].

However, we can speed up these explicit traversals by using theimplementation trick 1

(skip/count in Gusfield [1]): each pathS[j...i], which is followed in extensionj, is known

to exist in the tree, as such, the path can be followed by choosing the correct edges, instead of

examining each character. LetS[k] be the next character to be matched on pathS[j...i]. Now an

edge labeled byS[p...q] can be traversed simply by checking thatS[p] = S[k], and skipping the

next q− p character of S[j...i]. This improves the time to traverse a path from time proportional

to its string-depth to time proportional to its node-depth.

With the suffix links and the first trick the total time of a phase is nowO(|S|). However, there

are |S| phases and the total time bound is stillO(|S|2). In order to achieve the desired linear

time bound we just need a simple implementation detail and two more implementation tricks.

The implementation detail concernsedge-label compression. In fact, with the current imple-

mentation, the edge-labels in the suffix tree might containO(|S|) characters which makes the

space required for the suffix tree to beO(|S|2). As the time of the algorithm is at least as large as

the size of its input, that many characters makes anO(|S|) time bound impossible [1]. However

there is a simple alternative scheme for edge-labeling: instead of explicitly write a substring

S[p...q] as edge-label, we can write only apair of indiceson the edge,(p, q), specifying the

start and end positions of that substring inS. Since the algorithm has a copy ofS, it can locate

any particular character inS in constant time given its position in the string.
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For example, when matching along an edge, the algorithm uses the index pair written on

the edge to retrieve the needed characters fromS and then performs the comparisons on those

characters. The extension rules are also easily implemented in this labeling scheme: when the

extension rule 2 applies in a phasei + 1, we just have to label the newly created edge with

the index pair(i + 1, i + 1), and when rule 1 applies (on a leaf edge), we only need to change

the index pair on that leaf edge from(p, q) to (p, q + 1). Since the number of edges is at most

2|S| − 1, the suffix tree uses onlyO(|S|) symbols andO(|S|) space.

The implementation trick 2 (“show stopper” in Gusfield [1])is based on the observation that

some extensions can be found unnecessary to compute explicitly. In fact, Rule 3 is a “show

stopper” since if the pathS[j...i + 1] is already in the tree, so are the pathsS[j + 1...i +

1], . . . , S[i + 1]. As such, phasei + 1 can be finished at the first extensionj that applies Rule 3.

The implementation trick 3 (“once a leaf, always a leaf” in Gusfield [1])is based on the

observation that a node created as a leaf remains a leaf thereafter because no extension rule

adds children to a leaf. In fact, if extensionj created a leaf (numberedj), the extensionj of

any later phasei + 1 applies Rule 1 (concatenating the next characterS[i + 1] to end of the

edge-label ofj). As such, explicit applications of Rule 1 can be eliminated as follows: using

edge-label compression described above and representing the end position of each terminal edge

by a global valuee standing for “the current end position”. This means that in phasei+1, when

a leaf edge is first created ad would normally be labeled withS[p...i + 1] instead of writing the

pair of indexes(p, i + 1), as explained above, we write(p, e). The symbole is a global index

and is set toi + 1 once in each phase. In phasei + 1, since we know that rule 1 will apply in

extensions 1 throughji at least, we do not need explicit work to implement thoseji extensions.

Instead, we only need constant time to increment the value ofe and then do explicit work for

(some) extensions starting withji + 1.

The Single Phase Algorithm (SPA)[1] summarizes the implementation of phasei + 1:

Algorithm 2 : Single Phase Algorithm (SPA) [1]
input : S andTi

e = i + 1 (implements extensions1...j implicitly).1

Compute extensionsji+1...j until j > i + 1 or Rule 3 is applied in extensionj .2

ji+1 = j − 1 (for the next phase).3
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Using suffix links, edge-compression and tricks 1, 2 and 3, Ukkonen’a algorithm builds the

implicit suffix treesT1 throughT|S| in O(|S|) total time. Moreover, in order to create the true

suffix treeT we just have to use the final implicit suffix treeS|S|. We first add a string terminal

symbol$ to the end ofS and let Ukkonen’s algorithm continue with this symbol. Next, we just

have to replace every indexe on every leaf node with the value|S|. This is achieved by a simple

traversal of the tree, visiting each leaf each, which takesO(|S|) [1].

In order to construct the generalized suffix tree for a set of string{S1, ..., S|R|} all with the

same length|C| and sharing the same alphabetΣ
′
, we first build the implicit suffix trees from

TS1
1

throughS1TS
|C|
1

using Ukkonen’s algorithm. We then insert the stringsSi on the tree starting

with the last implicit suffix tree ofSi−1: T
S
|C|
i−1

, 2 ≤ i ≤ |R|. Finally we transform the last implicit

suffix treeT
S
|C|
|R|

in a true suffix tree by adding a string terminal symbol$i to the end ofSi and

let Ukkonen’s algorithm continue with these symbols one at the time. Assuming that the nodes

in the implicit suffix tree organize their children by lexicographic order of the first character of

their edge-labels, this is done in a way such that$1 > . . . > $|R| and every string terminator

$i is lexicographically smaller then any character inΣ′. This enables the insertion of leaves

corresponding to terminators in the root node (and other nodes) always in the first position of

the data structures storing the children of each node. This is done inO(|R||C|), since there are

|R| strings of length|C| and inserting each string in the suffix tree using Ukkonen’s algorithm

takesO(|R||C|) as we have seen above.

B. Data Structures used in the Generalized Suffix Tree Construction

We use three types of nodes in the construction of the generalized suffix treeT : the root,

internal nodes and leaf nodes. The root stores an array calledchildren with |C||Σ| + |R|
positions where each position is a pointer to the first of its “potential” children, which can

either be internal nodes, leaf nodes or a null pointer. The array is sorted in lexicographic order

of the first character of the edge-label in the nodes. The firstR positions store the|R| string

terminators, the next positions store the nodes whose first character in the edge-label starts with

Σ′[1]....Σ′[|C|]...Σ′[|C|Σ]]. In this setting,children[j + |R|] is null if there is not a suffix of

any of the stringsSi starting with the character inΣ′[j], that is, if the potential node whose

edge-label starts with the characterΣ′[j] does not exists.

Each internal nodev stores a pointer to its first child, a pointer to its right sibling, a pointer
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to the node we get by following its suffix link (if it exists), the index pair representing its edge-

label (start and end position os the substring), its string-length,P (v), the number of leafs in its

subtree,L(v) and a flag indicating if it corresponds to a maximal CCC-Bicluster or not. The

first child of the node is the first element of a linked-list of nodes (either internal nodes or leaves

nodes) corresponding to its children sorted in lexicographic order of the first character of their

edge-labels. The right sibling of each internal nodev is also the first element of a linked-list

storing all its siblings (nodes whose parent is the parent ofv).

Leaf nodes store the same information as internal nodes except the pointer to the first child.

II. EXPERIMENTAL RESULTS WITH SYNTHETIC DATA

Table I shows the top CCC-Biclusters discovered sorted in ascending order ofp-value. It is

clear from the presented results that the CCC-algorithm coupled with the statistical significance

test described in the paper is able to identify the CCC-Biclusters planted together with a number

of highly overlapping CCC-Biclusters1.
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1Lost genes are caused by the (artificial) way in which CCC-Biclusters were planted. When two or more CCC-Biclusters are
overlapping, the expression patterns in the overlapping submatrices are those of the last planted CCC-Bicluster. For this reason,
the genes in overlapping zones are lost for the previously planted CCC-Biclusters.
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TABLE I

TOP CCC-BICLUSTERS RECOVERED WITHOUT FILTERING HIGHLY OVERLAPPING EXPRESSION PATTERNS(AFTER SORTING

THE DISCOVEREDCCC-BICLUSTERS USING THE STATISTICAL SIGNIFICANCEp-VALUE ).

ID Expression Pattern #Time-Points #Genes p-Value Closest planted CCC-Bicluster

24475 DDNUDDNDDNDD 12(35-46) 18 4.13E-56 MATCH 7
5790 UDNNDUNUDNDD 12(26-37) 19 1.37E-55 MATCH 8

17868 NUNUUNDDNDNU 12(21-32) 19 3.72E-55 MATCH 1
25020 DNDNDDNNNNDD 12(33-44) 18 6.10E-54 MATCH 10
2438 UDDUNUDDU 9(37-45) 23 8.43E-40 MATCH 6 LOST 1 GENE1

5937 UUDNNDUNUDNDD 13(25-37) 12 2.76E-37 OVERLAP 8
15158 NUNDNNDDUNN 11(30-40) 16 4.08E-37 MATCH 3 LOST 3 GENES1

34531 UNUDUDNDUU 10(2-11) 16 7.17E-34 MATCH 5
16797 NDUNDNUUU 9(25-33) 20 8.20E-33 MATCH 9
23592 DDUNUDDU 8(28-45) 24 1.38E-31 OVERLAP 6
15893 NNDUNUDN 8(28-35) 21 2.04E-27 OVERLAP 8
18237 NNUNUUNDDNDNU 13(20-32) 9 1.17E-26 OVERLAP
15616 NDUNUDND 8(29-36) 20 9.10E-26 OVERLAP 8
24476 DDNUDDNDDNDDU 13(35-47) 8 1.82E-24 OVERLAP 7
33996 UDUDNDUU 8(4-11) 18 2.31E-24 OVERLAP 5
24482 DDNUDDNDDNDDD 13(35-47) 8 2.781E-24 OVERLAP 7
5796 UDNNDUNUDNDDD 13(26-38) 8 4.46E-23 OVERLAP 8

38344 NNUDUNNNU 9(1-9) 15 5.29E-23 MATCH 2
17874 NUNUUNDDNDNUD 13(21-33) 8 1.00E-22 OVERLAP
15613 NDUNUDN 7(29-35) 23 2.12E-21 OVERLAP 8
24818 DDDNUDDNDDNDD 13(34-46) 7 6.69E-21 OVERLAP 7
14213 NDDNUDDNDDNDD 13(34-46) 7 1.17E-20 OVERLAP 7
25027 DNDNDDNNNNDDD 13(33-45) 7 3.12E-20 OVERLAP 7
17048 NNDUNDNUUU 10(24-33) 11 2.90E-23 OVERLAP 9
3997 UDNDNDDNNNNDD 13(32-44) 7 7.07E-20 OVERLAP 7

15157 NUNDNNDD 8(30-37) 17 1.93E-19 OVERLAP 3
5789 UDNNDUN 7(26-32) 22 1.67E-18 OVERLAP 8
5416 UNDNUUU 7(27-33) 21 1.70E-18 OVERLAP 9
5942 UUDNNDUNUDNDDD 13(32-44) 7 1.93E-18 OVERLAP 7

37706 NUDUNNNU 8(2-9) 16 2.23E-18 OVERLAP 2
4182 UNUDNDD 7(31-37) 20 3.04E-18 OVERLAP 8

13600 NDDNNNN 7(36-42) 19 4.07E-18 OVERLAP 10
23014 DNDDNDD 7(40-46) 19 7.71E-18 OVERLAP 7
40141 DUDNDUU 7(5-11) 19 1.03E-17 OVERLAP 5
14145 NDUUDDDD 8(34-41) 14 1.48E-17 MATCH 4 LOST 1 GENE1
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