BioData.pt Talk

The **BioData.pt** Plant Sciences Community

Célia Miguel (BioData.pt / FCUL / iBET), Pedro Barros (BioData.pt / ITQB-NOVA), Daniel Faria (BioData.pt / INESC-ID)

October 22nd, 2020

Overview

- Introduction
 - ELIXIR
 - ELIXIR PT | Biodata.pt
 - The Biodata Plant Sciences community
- Showcase: The Cork Oak genome portal
- Showcase: Standards & Resources for FAIR Plant Data
- Other Resources
- Conclusions

ELIXIR

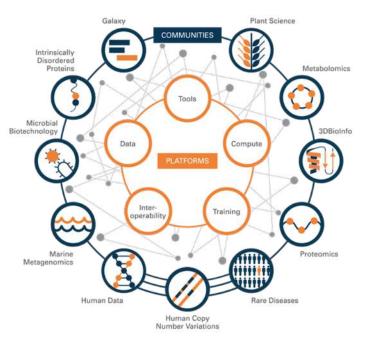
Intergovernmental organisation that brings together life science resources from across Europe (databases, software tools, training materials, standards and compute resources).

Goal: coordinate life science resources from across Europe so they form a single infrastructure

This makes it easier for scientists to:

- Find and share data
- Exchange expertise
- Agree on best practices in scientific research

BioData.pt Talk


October 22nd, 2020

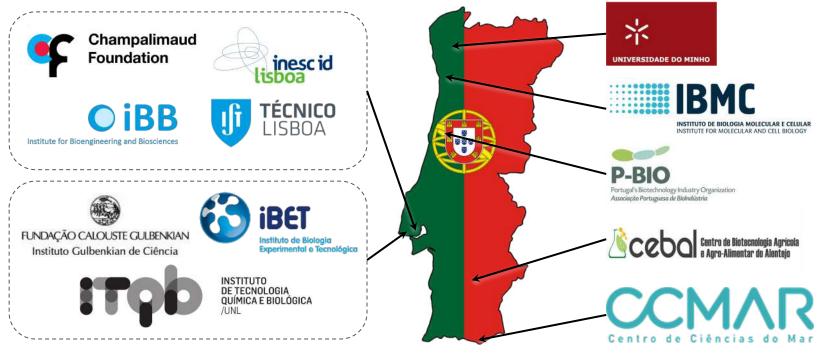
ELIXIR Organisation

ELIXIR coordinates activities through at least one of the five areas of activities called **Platforms**:

- Compute
- Data
- Interoperability
- Tools
- Training

These Platforms are driven by eleven ELIXIR **Communities** which develop standards, services, and training within their life science domains.

BioData.pt Talk

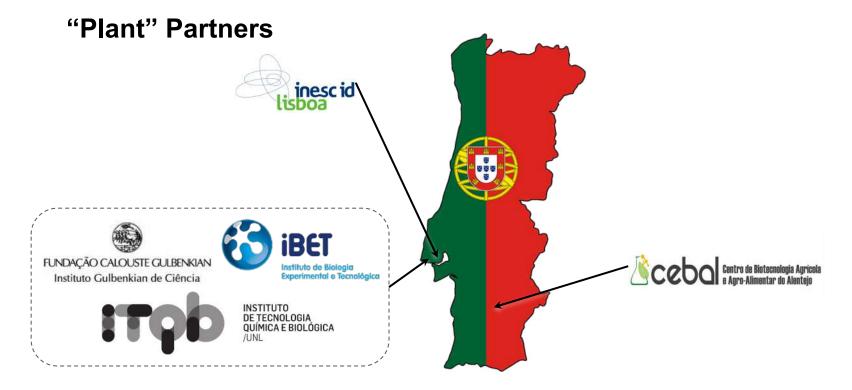

ELIXIR Members

- ELIXIR members host Nodes, which represent centres of excellence in bioinformatics.
- In total there are more than 700 researchers from over 220 research institutes.
- ELIXIR activities are coordinated by the ELIXIR Hub, based at the Wellcome Genome Campus, UK.

ELIXIR Portugal | BioData.pt

Consortium Partners

Célia Miguel, Pedro Barros, Daniel Faria


ELIXIR Portugal | BioData.pt

Organization Composed by heads of all member **Management Board** Scientific institutions Strategically advises Advisory direction Board Manages the day-to-**Board of Directors** day activities Life science domains Communities Platforms (e.g. agro-food and Services Provided by BioData.pt forestry, sea, health) Represent areas of to the (inter)national activity transversal research community to communities (e.g. computing, training)

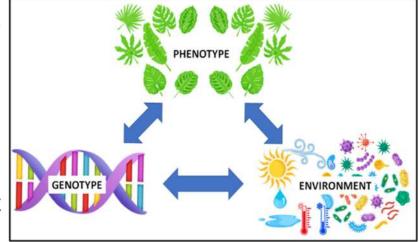
Célia Miguel, Pedro Barros, Daniel Faria

BioData.pt Talk

October 22nd, 2020

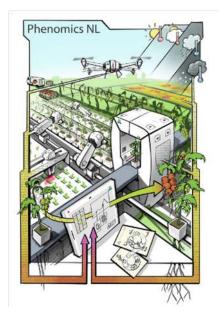
Célia Miguel, Pedro Barros, Daniel Faria

Context


- Became active during the ELIXIR-EXCELERATE project, where we co-led the Plant Sciences use-case
- **Goal**: support the publication and access to phenotypic and genotypic data, annotated according to established standards (woody plants as the main target)
 - Critical for addressing some of the major global challenges:
 - Sustainable supply of food and non-food materials
 - Competitive life-sciences industry sector
 - Environmental protection

Motivation: Plant Breeding (GxExP) remains challenging

- Advances can be obtained from the integration of genomic/genotyping data with diverse types of phenotyping data
- Systematic study of phenotypes on a genome-wide scale, and its association with genomic information under different environmental conditions



Djande et al 2020 DOI 10.3390/agronomy10060831

 Genomics/genotyping and phenotyping datasets are growing in number and size ⇒ gaps in genotype-phenotype associations

Motivation: How to Make Plant Data FAIR?

- Problems with plant data:
 - Heterogeneous (different settings, types of data...)
 - Complex and diverse experimental designs
 - Dispersed (no comprehensive public archive)
 - Poorly annotated (weaknesses in standards)
- FAIR data principles (Findable, Accessible, Interoperable and Reusable) are key to enable knowledge discovery

Objectives & Activities

Develop/recommend standards and ontologies to enable FAIR plant phenotyping data

Develop/implement repositories for plant phenotyping and genomic data

Develop/implement user-friendly interfaces for data deposition and retrieval

Icons made by inipagistudio, phatplus, Eucalyp and Freepik

Annotate and provide curated plant data sets

Develop/provide tools for plant data analysis

Provide training on plant data management

Talk

Bi@Data.pt

Engage with industry to exchange and apply knowledge

October 22nd, 2020

Species of Interest

- Cork oak (Q. suber)
- Maritime Pine (*P. pinaster*)
- Eucalyptus (*E. globulus*)
- Olive tree (O. europaea)
- Grapevine (V. vinifera)
- Rice (O. sativa)

Célia Miguel, Pedro Barros, Daniel Faria

Plant Sciences Community Showcase

CorkOakDB: The Cork Oak Genome Portal

Célia Miguel, Pedro Barros, Daniel Faria

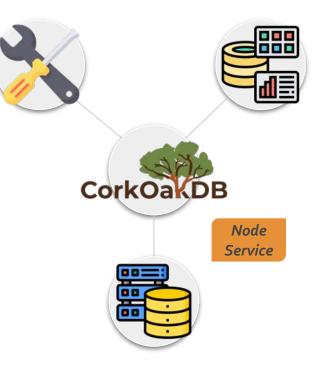
History

- Comprehensive database of cork oak transcriptome obtained by cDNA sequencing (ESTs)
- No knowledge of genome structure
- Incomplete gene coding sequences

www.corkoakdb.org

Célia Miguel, Pedro Barros, Daniel Faria

History



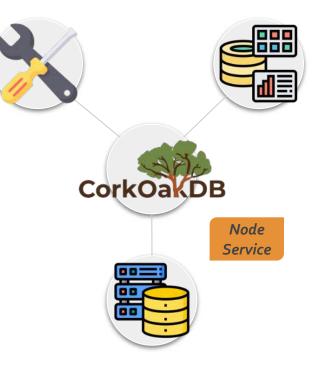
- Reference genome sequenced
- Improved gene structure annotation
- New transcriptomic datasets publicly available

Célia Miguel, Pedro Barros, Daniel Faria

Goal

- Create an integrated repository dedicated to cork oak 'omics'
- Development of tools for data visualization and retrieval for core genomics analyses
- Become a reference hub for research, aggregating all available genomic and transcriptomic (...) data

Data


- Genome sequence and structural annotation (gene, exon, intron, CDS)
- Gene expression (retrieved from publicly available studies)
- Curated metadata

Structure

 Web portal based on the Tripal framework (Drupal CMS + Chado database)

Célia Miguel, Pedro Barros, Daniel Faria

BioData.pt Talk

October 22nd, 2020

CorkOakDB: Genome Browser

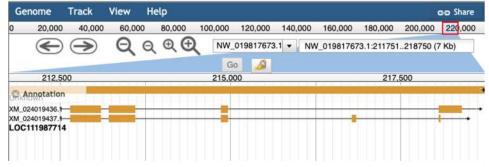
Tools

- Gene search and sequence retrieval
- Genome visualization (JBrowse)
- Homology search (Blast)

XM_024060952.1

nmary uences	Summary		1
tionship ST results	Resource Type	mRNA	
ss Reference	Organism	Quercus suber	
	Name	XM_024060952.1	
	Identifier	ma-XM_024060952.1	
	Gene	LOC112028279	
	Product	glycerol-3-phosphate acyltransferase 5-like, transcript variant X1	

	The following are Part Of this mRNA:				
Name	Unique Name	Species	Туре		
LOC112028279	gene-LOC112028279	Quercus suber	Gene		
XP_023916720.1	polypeptide-XP_023916720.1	Quercus suber	Polypeptide		
cds-XP_023916720.1	cds-XP_023916720.1	Quercus suber	CDS		
exon-XM_024060952.1-2	exon-XM_024060952.1-2	Quercus suber	Exon		
exon-XM 024060952.1-1	exon-XM 024060952.1-1	Quercus suber	Exon		


Sequences		X
Sequence	Argelalanticentargeletenterformeren generationen Terenagenerenacettetterenterageneren generatione Cercoggittentikatiogettergetigeneren generationen Teretrekenderen generationen terenterenter Tertrekenderen generationen terenteren generationen Certificationergetigeneren generationen teretregeneren	
Sequence Length	1729	
Coding Sequence (CDS)	ATGGIAAAATGCCAAATGGACTCAGTYGTYGCAGAGCTCGAAGGTGTTCT TCTCAAGGACCTAGAACGTTTTCCTTATTCAGTTAGOTGCCTTCGAGG CCTCGGGTTGATTGGGTTGTGGTGTGTGTGTATGGCTGTAGGCGTTGGAGT TGCTTCCTCAACCTGATGGGTGGGTGGAGGTCGAAGCCGCGGGTGGAGCGCGGGTGGACGGGTGGACGCGAGGTGGAGCGGGGGAGGGGGGGG	

Célia Miguel, Pedro Barros, Daniel Faria

CorkOakDB: Genome Browser

Tools

- Gene search and sequence retrieval
- Genome visualization (JBrowse)
- Homology search (Blast)

CorkOakDB: Genome Browser

Tools

- Gene search and sequence retrieval
- Genome visualization (JBrowse)
- Homology search (Blast)

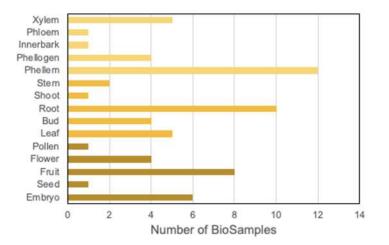
BLAST Results

Download: Alignment, Tab-Delimited, XML, GFF3

Query Information: /tmp/2020Apr07_164625_query.fasta Search Target: Cork Oak Proteins Submission Date: Tue, 07/04/2020 - 16:46 BLAST Command executed: blastp -max_target_seqs 500 -evalue 0.001 -word_size 3 -gapopen 11 -gapextend 1 -matrix BLOSUM62

Number of Results: 217

Resulting BLAST hits

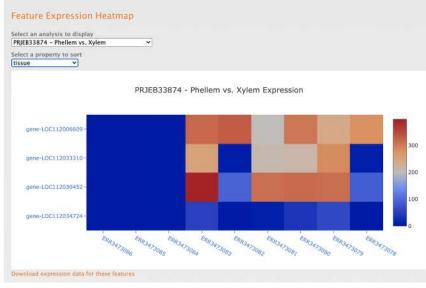

The following table summarizes the results of your BLAST. Click on a *triangle* on the left to see the alignment and a visualization of the hit, and click the *target name* to get more information about the target hit.

#	Query Name (Click for alignment & visualization)	Target Name	E-Value
• 1	AT4G17785[MY839[SUBERMAN	ref[XP_023923310.1]	5.76552E-86
• 2	AT4G17785[MYB39[SUBERMAN	ref XP_023894664.1]	3.16396E-77
▼ 3	AT4G17785[MYB39]SUBERMAN	ref[XP_023918909.1]	6.30974E-74
▼ 4	AT4G17785[MYB39]SUBERMAN	ref XP_023921866.1	1.09019E-72
▼ 5	AT4G17785[MYB39[SUBERMAN	ref(XP_023921864.1)	1.09019E-72
• 6	AT4G17785[MYB39[SUBERMAN	ref XP_023877052.1	1.07984E-70
• 7	AT4G17785[MYB39]SUBERMAN	ref XP_023893622.1	2.21112E-69
• 8	AT4G17785 MYB39 SUBERMAN	ref XP_023893623.1	3.39408E-69
• 9	AT4G17785 MYB39 SUBERMAN	ref[XP_023921729.1]	9.60762E-69
• 10	AT4G17785 MYB39 SUBERMAN	ref[XP_023886483.1]	9.56498E-68

CorkOakDB: Gene Expression

Data

- EST sequencing data
- Transcriptomic data for different tissues, developmental stages and growth conditions
- 65 RNA-seq libraries from 15 studies publicly available


Célia Miguel, Pedro Barros, Daniel Faria

CorkOakDB: Gene Expression

Visualization

- RNA-seq reads aligned with the reference genome to estimate gene expression
- Heatmap for comparative analysis
 of multiple genes

Heatmap

Célia Miguel, Pedro Barros, Daniel Faria

CorkOakDB: Next Steps

Home About - Search - Tools - Contact Us Intrane

Welcome to Cork Oak Genome Portal

CorkOakDB aims to integrate the knowledge generated from fundamental and applied studies about Quercus suber, with a focus on genetics.

Quercus suber (cork oak) is an important tree species from the Mediterranean region, mostly known for the sustainable production of cork and its distribution on protected ecosystems known as "montado" (in Portuguese) or "dehesa" (in Spanish).

CorkOakD8 features the first draft genome of Quercus suber, released in 2018 by the GENOSUBER consortium, and allows genome browsing and gene search. It also incorporates other types of data from cork oak scientific research, including gene expression data from publicly available datasets.

The knowledge of the genetic structure of cork oak is essential for the future development of innovative breeding and production strategies. From here on it will be possible to identify and study genes involved in the acquisition of traits of interest, such as cork production or resistance to pests. The genome sequence now available will also serve as a reference for sequencing other trees and identifying genetic variability related to characteristics of interest. This portal is intended to become a repository of data originated by scientific research in multiple areas.

CorkOakD8 is developed and maintained by the BioData.pt infrastructure.

You can access the previous EST CorkOak portal here.

Linking ESTs IDs (old portal) with gene IDs (new portal)

- Integration of curated data from published results (functional validation)
- Integration of other types of data (SNPs, phenotype, ...)

www.corkoakdb.org

Célia Miguel, Pedro Barros, Daniel Faria

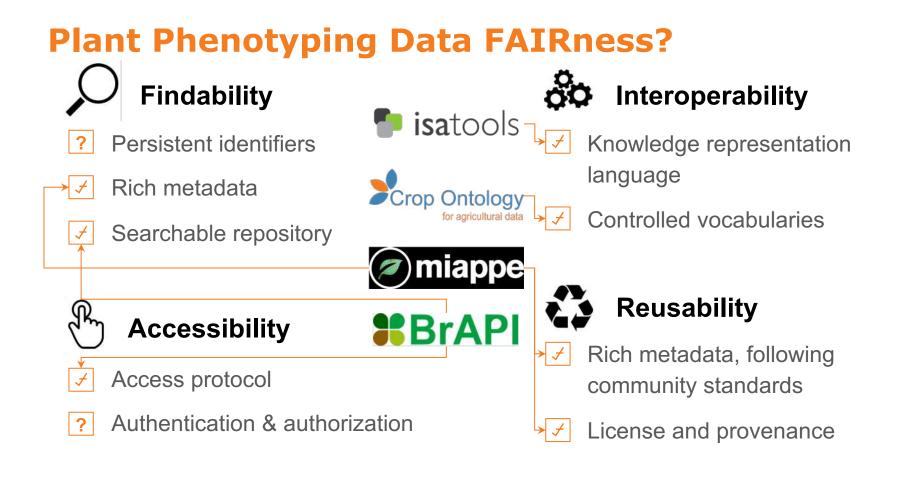
Plant Sciences Community Showcase

Standards & Resources for FAIR Plant Data

Célia Miguel, Pedro Barros, Daniel Faria

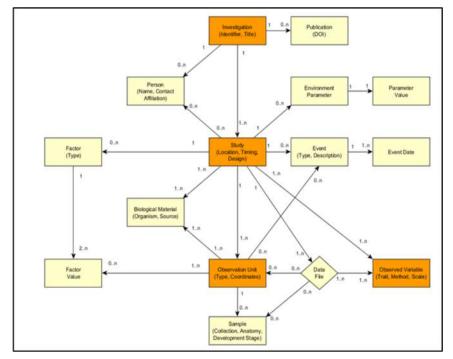
The FAIR Data Principles Findability

- Persistent identifiers
- Rich metadata
- Searchable repository


- Access protocol
- Authentication & authorization

Co Interoperability

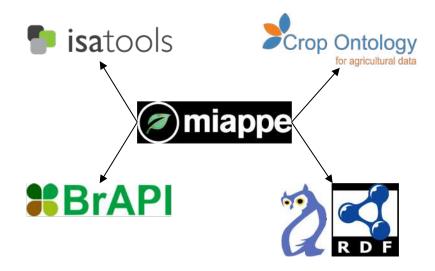
- Knowledge representation language
- Controlled vocabularies


- Rich metadata, following community standards
- License and provenance

Updating MIAPPE

Minimum Information About a Plant Phenotyping Experiment 1.1

- Scope extension: woody plants (e.g. identification through GPS)
- Revised structure to match ISA
- Enriched examples
- Data model specification
 (a standard is more than a flat list)



Célia Miguel, Pedro Barros, Daniel Faria

Updating MIAPPE

Minimum Information About a Plant Phenotyping Experiment 1.1

- Explicit ontology recommendations
- Mapping to BrAPI
- ISA-Tab templates
- OWL encoding (PPEO) to enable RDF
- JSON-schema version (in progress)


Developing Ontologies for Plant Data Annotation

Crop Ontologies

- Describe traits/features and methods for measuring them in specific plant species (MIAPPE observed variables)
 - Woody Plant Ontology
 - Rice Ontology

Plant Experimental Assay Ontology

 Describes experimental procedures and pipelines in Plant (Molecular) Biology

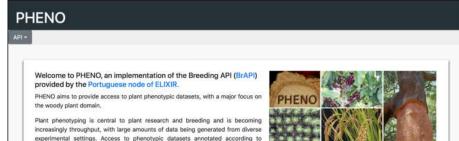
BioData.pt Talk October 22nd, 2020

Node

Service

Updating BrAPI

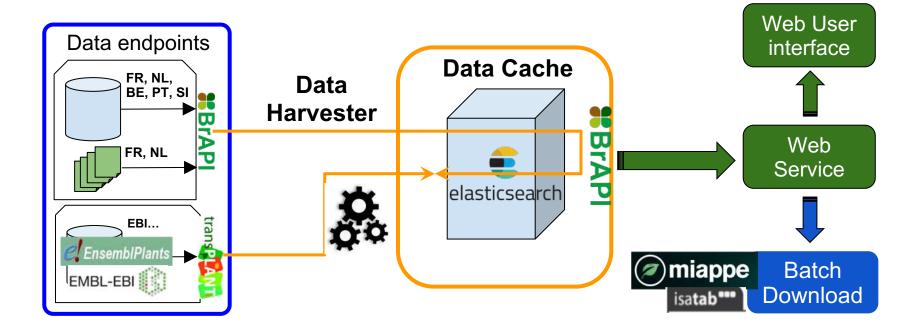
Breeding API 2.0


- Full coverage of mandatory MIAPPE fields (based on mapping)
- BrAPI to ISA-Tab exporting
- BrAPI to RDF or JSON-LD exporting (using PPEO as context)

Setting up a national BrAPI end-point

Breeding API

- BrAPI web service implements 13
 BrAPI calls
- Underlying SQL database
 reverse-engineered from BrAPI
 specifications (shifting to RDF)



widely accepted standards contributes for data interoperability, enabling powerful genotype-phenotype association studies

• Currently includes manually curated datasets on cork oak (Q. suber), rice (O. sativa) and J. curcas

Setting up a federated data lookup service

FAIR Data-finder for Agronomic REsearch

Célia Miguel, Pedro Barros, Daniel Faria

BioData.pt Talk October 2

October 22nd, 2020

FAIDARE

Enabling Web Page Findability with BioSchemas

- BioSchemas:
 - Extension of schema.org for the life science domain
 - Mark-up of web pages to enable findability
- Goals:
 - Map BioSchemas to MIAPPE fields critical for dataset findability
 - Mark-up CorkOakDB pages with BioSchemas
 - Setup FAIDARE to ingest BioSchemas mark-up

Bioschemas

Célia Miguel, Pedro Barros, Daniel Faria

Improving MIAPPE Usability

User Interfaces for MIAPPE Dataset Submission

- ISA-Tab template for ISA-Tools, not the most user-friendly
- Templates for popular data management platforms:
 - Dataverse (ready for use)
 - SEEK 4 Science (nearly finalized)
- Stand-alone OWL-based interface (in progress)

Data.pt		Add Data * Search * User Guide	Support 💄 Daniel Fana 🚺
WAPPE A			
Investigation * 0	Investigation unique ID 🕤		
	EB:12345670		
	Investigation title * 9		
	Adaptation of Natce to Temperate Clinistie Genetics and Diversity Patterns Reveal Ko Contribution of the Vgt2 (ZCN8) Locus		
	Investigation description 💿		
		npesate climates was accompanied by a is insight into the genetic architecture of this aned genome-wide association and divers	
	Submission date	Public release date 0	
	YYYY-MM-DD	YYYY-MM-DO	
	License 😔	MIAPPE version * 🕢	
	CC BY-SA 4.0, Unreported	Select.	
	Associated publication 🕣		
	doi:10.1371/journal.pone.0071377		
Study " 😣	Study unique ID * Q	Study title * 9	
	EBI 12345678 , http://phenome-tppit.tr/r	2002 evaluation of flowering time for a p	+
	Study description 📀	Start date of study * 💿	
	2002 evaluation of male and temale flow	YYYY-MM-DD	
	End date of study 😡	Contact institution * 😡	
	YYYY-MM-DD	UMR de Génétique Végétaie, #IRA - Lin	
	Geographic location (country) " 🕤	Experimental site name * 🕤	
	FR	INRA, UE Diascope - Chemin de Mezouk	

Célia Miguel, Pedro Barros, Daniel Faria

BioData.pt Talk Oct

October 22nd, 2020

Providing Training on MIAPPE

Plant Data Management Workshops

- Goal: Teach participants to describe a dataset according to MIAPPE v1.1
- Methodology: Lectures on introductory data management and MIAPPE, followed by a hands-on group exercise on a mock dataset, using a prepared MIAPPE template
- Past Events: Oeiras, Nov-2019; Paris, Feb-2020
- Future Events: TBD, virtual!

-		investigation (unique E)	_			1479
.=		investigation life	0.0			Fina
gat		instigation teachaiten	Person	2		tari Athiata
sti		Distance Befe		-		10
Investigation	liane	UMPS rectors 5.3 kinetister put kinten			Data fi	le 🗸
_		1011010200000		_		Receptor 1997 milita
			=	2		intros
		Thirty Redgee 18	Ë	Ξ		kon
		thury the	te	Ξ		later
		Stady description	Biological Materia	In i	ing 1	Real applicat Radiental Countriale Att
	Start John et Shudy	int horset stary	-			Kolog esi Materia Areprocesso
	9114	losse respect	0			Marini Saunt I
		Cecaraptic loss ten losuntral	60	ut I	101	Nederlei fon ze čeorit v ste WT
		Experimental acts name				. Walanta Santa Beach pho
>	871.	og sy betacation bowerners All	-			
-		ton of the Experimental Cesare				
Study			Ħ	_	Inverse Facebook	liveronex parameter rea
\$		Note of Experimental Design	um a	2	Environment Pasamitan	Environment passaration van
		Electric and the free of the second	Environment	2	Environment Parameter	Environment parameter val
		desenation that bescription				
		beautypice of \$10000 facility				1
			ntal	2		descripti
		Append Results Fee Pla	Experimental Factor			
		Salara Naches	Expe			100
			1.000.0	-		

Engaging with the Industry

Data Producers: The Navigator Company

- A major player in the international pulp and paper market and one of Portugal's strongest brands on the world stage
- Massive amounts of data on eucalyptus breeding and genetics:
 - Genotypic and phenotypic data on over 300,000 specimens across a range of sites and covering up to 4 generations of pedigree

Engaging with the Industry

Data Producers: The Navigator Company

Goals:

- Process, annotate and ingest pilot datasets into our BrAPI end-point
- Share knowledge and demonstrate the value of plant data FAIRification (e.g. integration with external datasets)

• Automate the process so the company can submit its datasets to BrAPI in bulk

Engaging with the Industry

Technology Producers: Phenospex

- Provide state-of-the-art automated plant phenotyping solutions to researchers across the world
- Software team interested in ensuring their information system is MIAPPE compliant and can export data via BrAPI calls
- An ideal partnership to ensure researchers produce FAIR data!

PHENOSPEX

Célia Miguel, Pedro Barros, Daniel Faria

Putting it All Together

One Standard to Rule Them All

- Whichever data management tool or data submission platform you choose for plant phenotyping data shall be MIAPPE compliant
- Metadata from all tools and platforms shall be interchangeable
- Genotyping and genomic data shall comply with MIAPPE specifications of Biological Materials to enable integration
- Bioschemas shall map to upper layers of MIAPPE

Putting it All Together

The ELIXIR RDM Toolkit – Plant Domain

- Document tools and resources for plant FAIR data management
- Address FAQs and common needs
- Prepare Data Management Plan templates for the plant domain, referencing the resources developed by the community and listed in the RDM Toolkit

Célia Miguel, Pedro Barros, Daniel Faria

BioData.pt Talk

October 22nd, 2020

Other Resources

Conclusions

Célia Miguel, Pedro Barros, Daniel Faria

Plant sRNA Portal

miRPursuit

 Automated workflow for downstream analysis of gene expression data and prediction of sRNA target genes

sRNA Database

 Repository of sRNA either annotated using miRPursuit or publicly available
 ment.

Célia Miguel, Pedro Barros, Daniel Faria

BioData.pt Talk

October 22nd, 2020

Conclusions & Perspectives

Engagement and adoption of resources by the community to promote FAIR data and provide easier ways to analyse and gain new insights from available data...

Training sessions on the usage of resources, plant data management, training materials...

Icons made by Freepik

Collaboration with other ELIXIR nodes - European projects (Converge,...), Implementation Studies, ELIXIR Knowledge Exchange and Staff Exchange Programs,...

Interaction with EMPHASIS, Crop Ontology, Bioversity,...

Thanks!

The **BioData.pt** Plant Sciences Community

Célia Miguel, FCUL / iBET Margarida Oliveira, ITQB-NOVA Nelson Saibo, ITQB-NOVA Pedro Barros, ITQB-NOVA Marcos Ramos, CEBAL Inês Chaves, ITQB-NOVA Daniel Faria, INESC-ID / IGC Bruno Costa, FCUL / INESC-ID Marta Silva, ITQB-NOVA Filippo Bergeretti, ITQB-NOVA André Cordeiro, ITQB-NOVA

Past collaborators: Daniel Sobral Cirenia Arias-Baldrich

All the **elivir** Plant Sciences Community

Especially our close collaborators: Cyril Pommier, ELIXIR-FR Anne-Françoise Adam-Blondon, ELIXIR-FR Celia Michotey, ELIXIR-FR Richard Finkers, ELIXIR-NL Evangelia Papoutsoglou, ELIXIR-NL Frederik Coppens, ELIXIR-BE Paul Kersey, previously ELIXIR-EBI

Co-financiado por

